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Waldschmidt Constant of Certain sets of
Points with 3 Supporting Lines in

Projective Plane
Nguyen Chanh Tu*, Dang Tuan Hiep

Abstract—The paper shows values of the initial degree and Waldschmidt constant for some special cases including several
cases of ten points with three supporting lines in projective plane. These constants represent the complexity of optimal
solutions in repeated path problems that have many applications in computer science, informatics theory and
telecommunications.

Index Terms—Waldschmidt constant, initial degree, zero-dimensional scheme, fat points.
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1. Introduction

W E denote by Pn the projective space over an
algebraically closed field k. Let P ∈ Pn, we say

that a form f of the polynomial ring R := k[x0, . . . , xn]

has multiplicity at least m at P if all partial derivatives
of f of order < m vanishing at P .

Let X := {P1, . . . , Ps} ⊂ Pn, let m1, . . . ,ms be
positive integers. Let Pi ⊂ R be the defining ideal of Pi

consisting of all forms vanishing at Pi, for 1 ≤ i ≤ s. We
denote by Z := m1P1+· · ·+msPs the zero-dimensional
scheme corresponding to the ideal J = ∩si=1P

mi
i con-

sisting of all forms ofR vanishing at Pi with multiplicity
at least mi, for i = 1, . . . , s. This zero-dimensional
scheme is called a fat point scheme.

Let A = ⊕tAt, be any homogeneous ideal in R :=

k[x0, . . . , xn]. The value α(A) = min{t|At 6= 0} is called
the initial degree of A. For the ideal J = ∩si=1Pmi ,
the initial degree α(J) is the least degree of the hyper-
surfaces containing Pi with multiplicity at least mi, for
1 ≤ i ≤ r.
Definition. Let X = {P1, . . . , Ps} ⊂ Pn, and I =

∩si=1Pi ⊂ R = k[x0, . . . , xn]. For m ∈ N, denote
I(m) = ∩ri=1Pm

i , the ideal of the fat point scheme
Z =

∑s
i=1mPi with equal multiplicity m. The value

lim
m→∞

α(I(m))

m
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is called the Waldschmidt constant of I or of the set X
and denoted by γ(I) or γ(X).

It is not hard to see the following basic properties.

Lemma 1.1. With notations as above, then

1) α(I(m)) ≤ mα(I).

2) γ(I) is well defined and 1 ≤ γ(I) ≤ α(I(m))

m
≤

α(I), ∀m ≥ 1.
3) γ(I) ≤ n

√
s.

Proof. See [3] and [18].

The constant is firstly introduced by Waldschmidt
[21], [22]. Since then, many results of this constant was
achieved mostly about finding lower bounds, see [2],
[4]–[9], [11], [12], [16], [17]. That is recently one of active,
fascinating and important topics as many applications
in various areas of mathematics and other sciences,
see [18] for more information. These constants represent
the complexity of optimal solutions in repeated path
problems that have many applications in computer sci-
ence, informatics theory and telecommunications.

However, computation of α(I(m)) and γ(I) is very
hard in general, even for cases of small numbers of
points in the projective plane. For a set of small number
of points in general position in P2, the Waldschmidt
constant was known only for cases of s points where
1 ≤ s ≤ 9 or s is a perfect square, see [14], [15].
The value γ(I) corresponding to the case of 10 generic
points in P2 is still open. Recently, the constants were
computed for certain sets of r+s points where there are
r collinear points and 1 ≤ s ≤ 7, see [20]. Note that, if
s = 1, it is the case of almost collinear as in [13]. The
constants are also computed for certain sets of small
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number of points with two supporting lines in [19].
In this paper, we will compute the constants for some
special cases including several cases of ten points with
three supporting lines. We used many tools in computer
algebra systems to support the computations.

For proofs in next section, we need to use following
results of Bezout.

Theorem 1.2 ( [10], I.7.7). Let Y be a variety of dimension
at least 1 in Pn, and let H be a hypersurface not containing
Y . Let Z1, . . . , Zs be the irreducible components of Y ∩H .
Then

s∑
j=1

i(H,Y ;Zj) degZj = (deg Y )(degH).

Note that i(H,Y ;Zj) is the intersection multiplicity
if Y and H along Zj .

Corollary 1.3 (Bezout’s Theorem, [10], I.7.8). Let Y, Z
be distinct curves in P2 having degrees d, e. Let Y ∩ Z =

{P1, ..., Ps}. Then
s∑

j=1

i(H,Z;Pj) = de.

Note that i(H,Z;P ) ≥ multP (H)·multP (Z) and the
equality holds if and only if H and Z have no tangent
in common at P , see [3].

2. Main results

Let X = {P1, . . . , Pr} be a set of points in P2; let
l1, l2, l3 be three lines containing all points of X , each
line contains at least 3 points of X . The paper shows the
constants of X in the following cases:

• no point of X lies on more than one of the lines;
• r = 10, one point of X lies in common of the three

lines and each line contains exactly 4 points of X ;
• r = 10, one point of X lies in common of two of

the three lines and each line contains exactly 3 of 9
remain points;

• r = 10, one point of X is in common of the three
lines and one of the lines contains 6 points of X .

Theorem 2.1. Let X = {P1, . . . , Pr}, such that all the
points lie on 3 lines l1, l2, l3, each line contains at least 3
points of X and no point lies on more than one of {l1, l2, l3}.
Then α(I(m)) = 3m for all m ≥ 1 and γ(X) = 3.
Consequently, that holds for ten points in the configuration.

Proof. Let I = ∩ri=1Pi. Let l1 = V (x), l2 = V (z), l3 =

V (f0) be the 3 lines, where f0 is a linear form. It is easy
to see that xmzmfm0 ∈ I(m), thus α(I(m)) ≤ 3m for all
m ≥ 1. Then γ(X) ≤ 3.

Prove that I(m)
3m−1 = 0 for any m ≥ 1. For m = 1,

it is clear that I2 = 0. Let f ∈ I
(m)
3m−1. Since each line

contains at least 3 points, it is easy to see that x | f,
z | f and f0 | f by Bezout’s Theorem. We can write

f = xzf0f1. Since no point of X lies on more than one
line of {l1, l2, l3}, we have f1 ∈ I

(m−1)
3(m−1)−1. Then by

induction, we have I(m)
3m−1 = 0. Thus α(I(m)) ≥ 3m and

γ(I) ≥ 3. Therefore we have desired equalities.

Theorem 2.2. Let X = {P1, . . . , P10}, such that all the
points lie on 3 lines l1, l2, l3, each line contains exactly 4
points of X and P1 ∈ l1 ∩ l2 ∩ l3. Then α(I(m)) = 3m for
all m ≥ 1 and γ(X) = 3.

Proof. Let I = ∩10i=1Pi, let l1 = V (x), l2 = V (z), l3 =

V (f0) be the 3 lines, where f0 is a linear form, see
Figure 1.

Fig. 1: Three lines with one point in common, 4 points on each line

It is easy to see that xmzmfm0 ∈ I(m), thus α(I(m)) ≤
3m for all m ≥ 1 and γ(I) ≤ 3.

We will show that I(m)
3m−1 = 0 for all m ≥ 1. Let f ∈

I
(m)
3m−1, we see that f ∈ J (m)

3m−1, where J = ∩10i=2Pi. By
Theorem 2.1, we have J (m)

3m−1 = 0. Thus I(m)
3m−1 = 0 for

allm ≥ 1. It means that α(I(m)) ≥ 3m for allm ≥ 1.

Corollary 2.3. With the same notations and argument as
above, the result holds when P1 lies on only two of three lines
as in Figure 2.

Theorem 2.4. Let X = {P1, . . . , P10}. Suppose there are
three distinct lines l1, l2, l3 such that {P1, P2, P3} ⊂ l1;
{P1, P9, P10} ⊂ l2 and {P1, P4, . . . , P8} ⊂ l3. Then
γ(X) = 31/11.

Proof. Let I = ∩10i=1Pi, let l1 = V (x), l2 = V (f0), l3 =

V (z) be the 3 lines, where f0 is a linear form, see
Figure 3.

Let Ci, for 4 ≤ i ≤ 8 be the conic containing
Pi and P2, P3, P9, P10. Let C = V (g0) be the irre-
ducible curve of degree 11 containing P1, having mul-
tiplicity at least 5 at P2, P3, P9, P10 and multiplicity
at least 2 at P4, . . . , P8. ( That curve exists by look
at the number of coefficients). It is easy to see that
z8xf0C4C5C6C7C8g0 ∈ I(11), thus α(I(11)) ≤ 31 and
then γ(I) ≤ 31/11.
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Fig. 2: Ten points in 3 line, two of lines contain one point in
common

Fig. 3: Three lines with one point in common, one line with 6 points

We will show that I(11m)
31m−1 = 0 for all m ≥ 1. Let

f ∈ I(11m)
31m−1. It is easy to see that x, z, f0 | f . Then f =

zaxbf c0g, where x - g, z - g, f0 - g. Let deg(g) = d

then a + b + c + d = 31m − 1. We have d ≥ (11m −
a − b − c) + 5(11m − a) = 66m − (a + b + c) − 5a =

66m − (31m − 1 − d) − 5a by Bezout’s Theorem. This
implies that 5a ≥ 35m+1. We also have d ≥ 11m−a−
b−c+2(11m−b) = 33m−(31m−1−d)−2b by Bezout’s
Theorem and obtain that 2b ≥ 2m+1. Similarly, we have
2c ≥ 2m+ 1.

Look at the conic Ci for 4 ≤ i ≤ 8. If Ci is not a
divisor of V (g), we have 2d ≥ 2(11m − b) + 2(11m −
c) + (11m − a) = 55m − 2(b + c) − a. This implies
that a ≥ 55m − 2(31m − 1 − a) = −7m + 2 + 2a then
a ≤ 7m−2. This contradicts to 5a ≥ 35m+1. Therefore
we have Ci is a divisor of V (g).

Look at the curve V (g0) and suppose that g0 is not a
factor of g, then 11d ≥ (11m−a−b−c)+2·5(11m−b)+2·

5(11m− c)+5 ·2(11m−a) = 31 ·11m−11(a+ b+ c) =

31 · 11m − 11(31m − 1 − d) = 11d + 11, impossible.
Therefore we have g0 is a factor of g. This means that
f = zaxbf c0C4 · · ·C8g0f1 ∈ I

(11m)
31m−1. Note that, for all

m ≥ 1, we have a ≥ 8, b ≥ 2, c ≥ 2. Then we can
write f = z8xf0C4 · · ·C8g0h, where h ∈ I

(11(m−1))
31(m−1)−1.

Since I(11m)
31m−1 = 0 for m = 1, then by induction we have

I
(11m)
31m−1 = 0 for all m ≥ 1. It means α(I(11m)) ≥ 31m

for all m ≥ 1 and then γ(I) ≥ 31/11. Thus the equality
follows.

3. Conclusion

The paper shows computation of initial degree and
Waldschmidt constant for some special cases in P2 in-
cluding fours cases of ten points with three supporting
lines. These results show the complexity of the optimal
solutions in repeated path problems with the corre-
sponding base point sets, which have many applications
in computer science, informatics theory and telecommu-
nications. Calculations for more complex configurations
can be developed from these results.
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